Линейное пространство - définition. Qu'est-ce que Линейное пространство
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Линейное пространство - définition

ОСНОВНОЕ ПОНЯТИЕ ЛИНЕЙНОЙ АЛГЕБРЫ, ПРОСТРАНСТВО НАД ПОЛЕМ
Линейная оболочка; Линейное подпространство; Вектор (алгебра); Размерность линейного пространства; Линейное пространство; Векторное подпространство; Векторное пространство над полем; Линейные комбинации; Линейные пространства

Линейное пространство         

тоже, что Векторное пространство. В функциональном анализе (См. Функциональный анализ) рассматриваются главным образом бесконечномерные пространства. Примером бесконечномерного Л. п. может служить пространство всех многочленов (с вещественными или комплексными коэффициентами) при обычном определении сложения и умножения на числа. Одним из первых примеров бесконечного Л. п. были Гильбертово пространство и пространство С [а, b] непрерывных функций, заданных на отрезке [а, b]. Эти пространства являются нормированными, т. е. такими Л. п., в которых введена норма элемента х - неотрицательное число , обращающееся в нуль лишь при х = 0 и обладающее свойствами и (неравенство треугольника). Число называют расстоянием между элементами х и у (см. также Метрическое пространство). В нормированном Л. п. вводятся понятия открытого шара, предельной точки множества, непрерывности функционала аналогично тому, как это делается в трёхмерном пространстве.

В конечномерном пространстве различные нормы топологически равносильны: последовательность точек, сходящихся при одной норме, сходится и при любой другой. В бесконечномерных пространствах нормы могут быть существенно различны. Например, при решении задачи П. Л. Чебышева о разыскании многочлена, наименее уклоняющегося от нуля (задачи о наилучшем приближении), надо найти такой многочлен (k - 1)-й степени Pk-i(t), чтобы

имел наименьшее значение. Вводя в пространство С[0,1] норму формулой

x=

эту задачу можно сформулировать следующим образом: требуется найти многочлен Pk-i(t), расстояние которого от функции t* было бы наименьшим. При рассмотрении же многочленов, ортогональных с весом p(t) (см. Ортогональная система функций), естественно рассматривать норму, определённую формулой

,

и решать задачу о наилучшем приближении в смысле этой нормы. Нормы ‖x и ‖x2 существенно различны, так как, например, последовательность функций

по первой норме расходится, а по второй норме при p(t) = 1 сходится к функции

.

Следует отметить, что хотя все функции xn(t) были непрерывны, функция x(t) разрывна. Это связано с тем, что пространство непрерывных функций неполно относительно нормы ‖x2. При этом нормированное Л. п. называется полным, если для любой последовательности {xn} его элементов, удовлетворяющих условию

,

существует в Л. п. такой элемент х, что данная последовательность сходится к нему, т. е.

,

Если Л. п. неполно, то к нему можно присоединить новые элементы (пополнить его) так, что оно станет полным. Например, пополняя пространство непрерывных функций, взятое с нормой ‖x2, получают гильбертово пространство L2p. Полные нормированные Л. п. называется банаховыми, или В-пространствами, - по имени изучившего их основные свойства С. Банаха.

Обобщением понятия B-пространства является понятие топологического Л. п. Так, называют множество Е, если: 1) оно представляет собой Л. п., 2) оно является топологическим пространством (См. Топологическое пространство), 3) операции сложения и умножения на числа в Е непрерывны относительно заданной в Е топологии. К числу топологического Л. п. относятся все нормированные пространства. А. Н. Колмогоров установил (1934) необходимые и достаточные условия нормируемости топологического Л. п.

Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965.

ЛИНЕЙНОЕ ПРОСТРАНСТВО         
то же, что векторное пространство.
Векторное пространство         

математическое понятие, обобщающее понятие совокупности всех (свободных) Векторов обычного трёхмерного пространства.

Определение В. п. Для векторов трёхмерного пространства указаны правила сложения векторов и умножения их на действительные числа (см. Векторное исчисление). В применении к любым векторам х, у, z и любым числам α, β эти правила удовлетворяют следующим условиям (условия А):

1) х + у = у + х (перестановочность сложения);

2) (х + у) + z = x + (y + z) (ассоциативность сложения);

3) имеется нулевой вектор 0 (или нуль-вектор), удовлетворяющий условию x + 0 = x: для любого вектора x;

4) для любого вектора х существует противоположный ему вектор у такой, что х + у = 0,

5) 1 · х = х,

6) α(βx) = (αβ) х (ассоциативность умножения);

7) (α + β) х = αх + βх (распределительное свойство относительно числового множителя);

8) α(х + у) = αх + αу (распределительное свойство относительно векторного множителя).

Векторным (или линейным) пространством называется множество R, состоящее из элементов любой природы (называемых векторами), в котором определены операции сложения элементов и умножения элементов на действительные числа, удовлетворяющие условиям А (условия 1-3 выражают, что операция сложения, определённая в В. п., превращает его в коммутативную группу). Выражение

?1e1 + ?2e2 + ... + αnen (1)

называется линейной комбинацией векторов e1, e2,..., en с коэффициентами α1, α2,..., αn. Линейная комбинация (1) называется нетривиальной, если хотя бы один из коэффициентов α1, α2,..., αn отличен от нуля. Векторы e1, e2,..., en называются линейно зависимыми, если существует нетривиальная комбинация (1), представляющая собой нулевой вектор. В противном случае (то есть если только тривиальная комбинация векторов e1, e2,..., en равна нулевому вектору) векторы e1, e2,..., en называется линейно независимыми.

Векторы (свободные) трёхмерного пространства удовлетворяют следующему условию (условие В): существуют три линейно независимых вектора; любые четыре вектора линейно зависимы (любые три ненулевых вектора, не лежащие в одной плоскости, являются линейно независимыми).

В. п. называется n-мepным (или имеет "размерность n"), если в нём существуют n линейно независимых элементов e1, e2,..., en, а любые n + 1 элементов линейно зависимы (обобщённое условие В). В. п. называются бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мepного В. п. образуют базис этого пространства. Если e1, e2,..., en - базис В. п., то любой вектор х этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:

x = α1e1 + α2e2 +... + αnen.

При этом числа α1, α2,..., αn называются координатами вектора х в данном базисе.

Примеры В. п. Множество всех векторов трёхмерного пространства образует, очевидно, В. п. Более сложным примером может служить так называемое n-мерное арифметическое пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел: λ 1, λ 2,..., λ n. Сумма двух векторов и произведение на число определяются соотношениями:

(?1, ?2, ..., ?n) + (?1, ?2, ..., ?n) = (?1 + ?1, ?2 + ?2, ..., λn + μn);

?(?1, ?2, ..., ?n) = (??1, ??2, ..., αλn).

Базисом в этом пространстве может служить, например, следующая система из n векторов e1 = (1, 0,..., 0), e2 = (0, 1,..., 0),..., en = (0, 0,..., 1).

Множество R всех многочленов α0 + ?1u + ... + αnun (любых степеней n) от одного переменного с действительными коэффициентами α0, α1,..., αn с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует В. п. Многочлены 1, u, u2,..., un (при любом n) линейно независимы в R, поэтому R - бесконечномерное В. п.

Многочлены степени не выше n образуют В. п. размерности n + 1; его базисом могут служить многочлены 1, u, u2,..., un.

Подпространства В. п. В. п. R' называется подпространством R, если R' ⊆ R (то есть каждый вектор пространства R' есть и вектор пространства R) и если для каждого вектора v ∈ r' и для каждых двух векторов v1 и v2 (v1, v2 ∈ R') вектор λv (при любом λ) и вектор v1 + v2 один и тот же независимо от того, рассматриваются ли векторы v, v1, v2 как элементы пространства R' или R. Линейнîé îáîëî÷êîé âåêòîðîâ x1, x2,... xp íàçûâàåòñÿ ìíîæåñòâî âñåâîçìîæíûõ ëèíåéíûõ êîìáèíàöèé ýòèõ âåêòîðîâ, òî åñòü âåêòîðîâ âèäà ?1x1 + ?2x2 + ... + αpxp. В трёхмерном пространстве линейной оболочкой одного ненулевого вектора x1 будет, очевидно, совокупность всех векторов, лежащих на прямой, определяемой вектором x1. Линейной оболочкой двух не лежащих на одной прямой векторов x1 и x2 будет совокупность всех векторов, расположенных в плоскости, которую определяют векторы x1 и x2. В общем случае произвольного В. п. R линейная оболочка векторов x1, x2,..., xp этого пространства представляет собой подпространство пространства R размерности р. В n-мерном В. п. существуют подпространства всех размерностей, меньших р. Всякое конечномерное (данной размерности k) подпространство R' В. п. R есть линейная оболочка любых k линейно независимых векторов, лежащих в R'. Пространство, состоящее из всех многочленов степени ≤ n (линейная оболочка многочленов 1, u, u2,..., un), есть (n + 1)-мepное подпространство пространства R всех многочленов.

Евклидовы пространства. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:

1) (х, у) = (у, х) (перестановочность);

2) (x1 + x2, y) = (x1, y) + (x2, y) (распределительное свойство);

3) (αx, у) = α(х, у),

4) (х, х) ≥ 0 для любого х, причем (х, х) = 0 только для х = 0.

Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством (См. Гильбертово пространство). Длина |x| вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами

Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n-ìepíîì àðèôìåòè÷åñêîì Â. ï. ñêàëÿðíîå ïðîèçâåäåíèå âåêòîðîâ x = (?1, ..., ?n) è y = (?1, ..., μn) соотношением

(x, y) = λ1μ1 + ?2?2 +... + λnμn. (2)

При этом требования 1)-4), очевидно, выполняются.

В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у) = 0. В рассмотренном пространстве En условие ортогональности векторов x = (λ1, ..., ?n) è y = (?1, ..., μn), как это следует из соотношения (2), имеет вид:

?1?1 + ?2?2 +... + λnμn = 0. (3)

Применение В. п. Понятие В. п. (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R - множество всех решений линейного îäíîðîäíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ yn + a1(x) y (n + 1) + ... + an (x) y = 0. Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является В. п. Любой базис в рассмотренном В. п. называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений:

Ðàññìîòðèì â åâêëèäîâîì ïðîñòðàíñòâå En âåêòîðû ai = (?i1, ?i2, ..., αin), i = 1, 2,..., n и вектор-решение u = (u1, u2,..., un). Пользуясь формулой (2) для скалярного произведения векторов En, придадим системе (4) следующий вид:

(ai, u) = 0, i = 1, 2, ..., m. (5)

Из соотношений (5) и формулы (3) следует, что вектор-решение u ортогонален всем векторам ai. Иными словами, этот вектор ортогонален линейной оболочке векторов ai, то есть решение u есть любой вектор из ортогонального дополнения линейной оболочки векторов ai. Важную роль в математике и физике играют и бесконечномерные линейные пространства (См. Линейное пространство). Примером такого пространства может служить пространство С непрерывных функций на отрезке с обычной операцией сложения и умножения на действительные числа. Упомянутое выше пространство всех многочленов является подпространством пространства С.

Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Гельфанд И, М., Лекции по линейной алгебре, М. - Л., 1948.

Э. Г. Позняк.

Wikipédia

Векторное пространство

Ве́кторное простра́нство (лине́йное пространство) — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.

Векторные пространства являются предметом изучения линейной алгебры. Одна из главных характеристик векторного пространства — его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубой геометрической интерпретации, число направлений, которые невозможно выразить друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением. Подобные пространства естественным образом появляются в математическом анализе, преимущественно в виде бесконечномерных функциональных пространств, где в качестве векторов выступают функции. Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев — подходящей топологией, что позволяет определить понятия близости и непрерывности. Такие топологические векторные пространства, в частности, банаховы и гильбертовы, допускают более глубокое изучение.

Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку. Именно тогда своё развитие получили аналитическая геометрия, учения о матрицах, системах линейных уравнений, евклидовых векторах.